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‘The?e is a point analogous to the Crocco point.
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SHOCK CURVATURE AND GRADIENTS AT THE TIF OF
POINTED AXISYMMETRIC BODIES IN NONEQUILIBRIUM FLOW

~ ABSTRACT

_Thé shock curvature andlflow variable gradients at the tip of a
pointed body caused by'nonequilibriuﬁ effects are considered.
Coofdihates introducéd by Chester are used since they offer a convenient
way of treating the boundary conditions. The desired functions are
obtained by solving numerically a system of linear ordinary differential
equations. AThése”equations have a singularity; the nature of the singu-
larityfis found analytically;:and its numerical treatment is discussed.
The spééific nonequilibrium effect considered is vibrational relaxation
in a pure diatomic gas. Representative results are given for flow of
N2 cver a cone for a comprehensive range of Mach number and cone angle.
These results compare

fgvorably with those obtained by South and Newman using an approximate

method. Ancther check is made by comparison with characteristic

cglculations extrapolated to the origin.
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LIST OF SYMBOIS
functions defined in equation (3.4)

specific heat at const. pres. (translat. and rotat. modes)
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functions defined in eguation (3.5)
constant occurring in expression for T c = ¢ /T
function defined in equation (2.13)

vibrational energy per unit mgss E=§K /[c T I]

egquilib. vibrat. energy per unit mass at temp. T

E:E‘/(C’ T’:)

body curvature at tip
shock wave curvature at tip

local Mach nurber
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_ (ap/an)n _ 0
- (3/3M)y, _ 4
temperature T=7 /T
Gu/oN)y |
Gv/aMy - o
aV’/Tw’

angle between x ;axis and tangent to shock wave

e, e’ = 1.4 in present caleculaticis
a a

0 for idesal gas flow, = 1 for nonequilib. flow

L]

2
. o 4 / [
Chester variable L =2y /[pm q 'y ]
Chester variable M=y

angle betwsen velocity vector and x’ axis

characteristic vivbrational temparature of the gas

D,/Dml

I3

density 0

-3 ma o= 1lir !
me ; T/

stream function
function defined in equation (2.6)

@E/N)y .
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free stream conditions

body
shock wave’

refers to homogeneous differential equations and their

solution

refers to particular solution toc nonhomogensous

differential equations

denotes quantity with dimensions
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1. INTRODUCTION

When nonequilibrium effects are con51dered in the fluid dynamlc
equatlons, the classical similar solutions descrlblng supersonic flow -
over wedges and cones no longer exist. To gain some’ insight into
nonequilibrium effects one can seek-sdlutione valid in restricted regions

of a flow, e.g., the vicinity of t & or cone The fi

edge or cone. he first
approximation to the flow here is the frozen (similar) solution. The
next approximation brings into evidence thé nonequilibrium effects, such
as the curvature of the shock wave.’ The'purpose'of”this work is to find
this approximation for the case of Tlow over a cone and pointed ogives

in general.

{QmAmane 0L Y
o 1./

ssponding problem for wedge ~ v 1a wmacnland
The CO respoiaing propiei 1OL wWoUge CULCY 54 L7V Lo FCLULVED

by expllc1t solution of algebralc equatlons. For cone flow‘ differential
equatlons with tWO—pOlnt boundary condltlons (at shock and body surface)
must be1solved The coefflc1ents of these equatlons whlch 1nvolve the
frozen conlcal flow solutlon glve rlse to a 51ngular p01nt, at least

in all ch01ces of coordlnates 1nvest1gated

There is a close analogy between the problem of approximating the
noneguilibrium flow in the neighborhooa_of the tlp:of a wedge or_oone
and that‘of approximating the equiliurium or, froien flow near'the tip
of a pointed—ogive body. The latter problem was solved bv Crocoo (1937)
for two:dimensional flow and by Shen and Lln (1951) for ax1symmetr1c
fiow, In order to treat the 31ngular1ty for the ex1symmetr1c case and
espec1ally its effects on hlgher approx1mat10ns Kogan (1956) formulated
the proplem in terms of Crocco's stream function. This reflnement,
however, is not included in the values of shock curvature hitherto

publlshed Shen and Lin (1951), and Bianco et al, (1960).

]
In the method of solutlon adopted here for determlnlng shock
curvature and gradlents caused by nonequlllbrlum effects these same
quantltles for frozen flow over oglval bodles are obtalned as a

by—product. The spe01f1c source of tbe nonequlllbrlum effects considered

here is vibrational relaxation of a dlatomlc gas; however the present

11



method can be employed for dissociation, lonization, ete. The model of
a vibrationally excited gas serves as well as any other example to

ililustrate the technique and effects.

A distinctive feature of this analysis is the cheoice of coordinates.
Specifically the coordinates used are those introduced by Chester (1956)
in his study of hypersonic flow over bilunt bodies. The chief advantage
of this choice is the ease of handling the boundary conditions on the
shock; for here the unknown shock curve is mapped into one of the
coordinate lines. Also the singular point at the tip is spread out into
a line interval along the second coordinate axis. The latter, but not
the former, advantage is also gained with polar coordinates. The
differential equations now have an integrable, inverse one-half power-
type of singularity at the origin. This could be handled in the
standard way -- using expansions to match the numerical solution; instead
the entire problem is treated numerically, the authors believe this
procedure to be more efficient. The singularity is treated by a "detailed
approach to the body" which involves decreasing the step size in the

Bunge-Kutta numerical integration procedure.

The motivation for this work arose in the computation of
nonequilibrium flows over cones, Sedney and Gerber (1963), by the method

of characteristics. One is forced to initiate that calculation by

assuming a finite frozen W 1. The effect of this error can be
relatively large and propagate two or three lengths of the originsal
frozen region downstresm even though the grid size is twenty to thirty
times less than this length. The behavior near the tip can be studied
by the laborious process of choosing successively smaller frozen flow

regions.

The results of the present paper can be used as a check on those
from the characteristic method. Alternatively, they can be used as
input to start the characteristic calculation. With the improved
approximation to the flow near the tip, a larger grid size is possible

and a saving on computation time realized.

12



2. FLOW EQUATIONS

The axisymmetric flows to be ‘considered are steady, inviscid, and
L}
isocenergetic., The equations for conservetion of mass, momentum, and

energy are, in non-dimensionsal form,

3 3 _
% ew) * o= (yev) =0 (2.1)
2 fp2m, ] 13
M, [ﬁ ax 7 By] T T p o8x : ' (2.2)
2 av oY 13p
— 2= L =
Y™, { i By] > &y (2.3)

-1 M;E (u? +

2
5 )

- .+T+E==ht o (2.1)

See Figuré 1 for notation (where primes indicate dimensional guantities);
p is density, p is pressure, T is temperature, E is vibrational energy
per unit mass, y is the ratio of frozen specific heats, and ht is the

constant total enthalpy. Variables are made dimensionless as follows:
7 ) ? :
lengths by Ty %% where Ty is the relaxation time evaluated at the

frozen conditions on the body tip and qm’ is free stream velocity;
velocitles, pressure, density, and temperature by their free stream
values; vibrational energy by céa' T, ', the frozen enthalpy in the free
stream., The model chosen for the diatomic gas with vibrational relaxation

is discussed in Sedney {1961). The perfect gas law is assumed

p = ol . (2.5)
and the rate equation is
aE 9k
— —_— = * - =
UtV [E*¥ (T) - El/t = ¢ (2.6)

13



Figure 1. Cross-sectional view of flow field in the physical plane,

{(q’ = flow speed; u’, v’ = velocity components in
coordinate directions.)!

il

SHOCK

TIP

BODY

0 . > 7]

Figure 2. Flow region in the ¢, n plane.
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where 1 is the relaxation time referred to Tb', and E*(T) is the local

equilibrium value of E, given by

1

B¥(1) = (22/7) /(2T - 1)

st Frm ! —~ L . - LY PO R T Sy S,
with 4 flmv L ,(wv = characteristic vibrational tempergture.

=
@

variation of v with T and p is approximated by

t = (py/0) exp [(e/D)Y3 - (e/m )3

and the subscrlpt b refers to condltlons on the body at the tlp " The
constant c is evaluated for wvarious temperature ranges by fitting

experimental dats; e.g., those of Blackman (1956) or Millikan and Wh:Lte
(1963)

The independent variables x,y are transformed to 7, n by

# P 2 ) o '
c=2vx, ¥}y, n=vy (2.7)
where y is the dimensionless stream finction’
3Y/dx = = yov, 3y/3y = ypu
3 . _2vd _ -3 . _3., 2(u -g)d . et e (D
Thus —= = - Tt and 3 =3 + - YL and Fq_!uatlo‘ns (.2j1)‘, |
(2.2}, (2. ?) d (2.6) become, resvectively, .
ey e feN L a N\, T
2—(Zj-2 58— + =(1]= .
k4 (v) ar (p;) ,an-(;v)- 9 PR . (2 3)
o 2 p 3u Ju -
—5 )5, s oo -2 o7 (2.9)
(YMm2) az n 0L
PEOBYI04T, 11npapy
15 BLDS, 513

ABERBEEN PRovirg aROURD 11,
BTEAT-py,



M '
= 3,2, .2 3,2, 20_ 1( s ., 3
( 5 )[b 3 {(u” + v ) - 2g T (u" + v .] = -3 (n o 2z T (2.10)

v (n %%— o1 g?) D [g#(1) - E] (2.11)

Note that if vibraticnal energy in the free stream is negligible
(E, = 0)

hy = 1+ (1/2){y - 1) M@e

This would be the case if T <<®_ and eqguilibrium existed in the free

stream. If the free stiream quilibrium E_ will, in general,
not be negligible. This would occur 1f a cone were placed in the test
section of a shock tunnel since the free stream is generally frozen in
such a facility. In any case, behind the shock, E takes its free stream

value.

The variables ¢ and n er? enployed by Chester in the study of
wpersonic flow past blunt bodies. In the present problem the shock
wave 1ls attached at the pointed tip of the body, but the flow region is
mapped into the same strip of the £, n plane as for the case of &
detached shock. This strip is shown in Figure 2 where it is seen that
the tip transforms into the line segment n =0, 0 < ¢ < 1. This
stretching is necessary to examine the singularity at the tip. It is
also accomplished by using polar coordinates (when properly plotted on
rectangular axes); however, the shock curve is unknown then. The same
strip is obtained if a body-oriented coordinate system is used and the
normal coordinate is normalized by the total distance between the body

and shock,

If the body is a cone and the flow is either frozen or in
equilibrium so that the flow is conical, then the flow variables are

constant along the lines ¢ = constant. This is shown using the fact

16



3

that ¢ 15 homogeneous of degree two in the varlables X and Y, a result
which follows from the definition of ¢y and the fact that pu and s are
homogeneous of degree zero. .The streamllnes are alwayo the hyperbolae

cn2 = constant.

. On phy51cal grounds _one would. expect that the flow at the tip,
n = 0, should be frozen; this is easily proved from Equations (2.8) -
(2.11). HSetting n = 0, all terms containing 3/9n vanish, 3E/3g =

and the remaining equations give |

du-_ 1 pvy,
a 2( 2)/D
p
dag 2 3
)
L S : M 2'C_v (2.12)
o 1% ),D
, dc . 2 p B
Yoo
- 2
ap _ L(YM pvc)/b
dz 2 2

| 2 Mége | - |
D = ELQE—E—QL‘+ % ( -_f"a") | (2.13)

L

Since sﬁ/a; =0 along n = 0, E is then -constant-there; 1. €.y the flow

is frozen at the tip. The constant Wlll be the free stream value of E.

The Equations (2.12) are those for conical frozen (Taylor-Maccoll)

flow in the coordinates Z, n; their numerical solution is a necessary

Step in the determination of the gradients since the frozen flow variables

appear as coeff1c1ents 1n the gradlent equatlons. This sdlution is

L. S

K o ot = et . -

17



obtained by integrating from the shock, £ = 1, to the body, £ = 0, given

M, v, and B, where tan B is the shock wave slope. The initial condi-
tiong at the shock are the stgndard frozen shock relations
2 2
2(M © sin” g - 1)
u, =1 - : {2.14)
(y + 1)M

and so forth. The half-angle of the body tip is determined from

|
tan 6, = (v/u)z = g (2.15)

One can integrate several case$ and then interpolate to find a desired

half-angle or set up an iteration procedure to yield this result.

3. GRADIENT EQUATIONS
The equations for the gra@ients of the flow variables are obtained
by differentiating Equations (2.8) - (2.11) with respect to n, then
setting n equal to zero. This requires the assumption* that
92/agan = BE/Bna;.

The following notation is introduced:

c
0

(eu/on) o, V= (0v/on) _ o, 0= (3E/m) _,

(3.1)

=}
n

(3/3n) _ o> B =(op/on)

The set of mathematical eonditions insuring the interchangeability of
seecond derivatives 18 different from that insuring the validity of an

expansion of the form f(n,g), + (afVan)bn + 0(n%). Weither set can
be verified a priori.
18



Hereafter, it is understood that all quantities are evaluated

at n = 0, The differential équations for the gradient functions are

(where ° = d/dr)
Q= (2 - o/v)/(2z) ' (3.2)
U= (1/D) [vé/p 1 (C - en)/z] (3.3a)
V= (1/D) [-gG/p + £ {C - e2)/z] | (3.3p)
R=-[u° B+ (& + P)A - M /v s - em/gl/D (3.30)

where the denominator D is the same as in Equation (2.13). The .

coefficients g, b, £, and j are known functions of z:

g=u-=tle

o
[l

lpg/v - (v - 1) M2 vgl/(2y 1)

(3.4)
= 2 2
£=[cM" (yvg - u +pl/(2y M “p)

[==]

¢h
]

o [(y -1 v +g(yeg-wliey v,

where u, v, p, and p have been obtained from the solution to Eqﬁations
(2.12); - ¢ is given in Equation (2.6). The symbol ¢ is equal to zero

for frozen flow (no vibrational relaxation), and one for nonequilibrium
flow.

The coefficients A, B, C, F, and G are linear functions of U, V, R,
and §:

A= -MZ [y/2+ (v - 1w+ o)1 U= (y - 1) M7 (v + ov) V

+ (y - 1)(pp/o°)R , (3.5)

19



B = (v/v) U+ [u/v+ (Cé)/(pgv) - 2Gg/v2] v
+ (c/o2) (v/v + 20/0)R

2 . .
C=M" (u-2ygu - yz/p) U+ Mw2 (v -2yv) v

2 . (3.5)
+ {(1/0")(p + 2z p)R

=
1

o & (1/5)(p/2)(a - 8/v)

@
il

DB + zA/p - e [zo0/p + (1/2)(0 - o/v)]

Equation (3.2) can be solved separately, using the initial condition,
@z = 1) = 0 (since E does not change along £ = 1); then Q can be trested
85 & known function of r in Equations (3.3). Equations (3;3) are linear
equations in U, V, and R, homogeneous when ¢ = 0 and non-homogeneous when
e =1,

The pressure gradient function E% is obtained by differentiating
Equations (2.10) with respect to n and taking n = ¢ = O:

By= - (WM5) b (w0 + wi), (3.6)

b

Initial conditions are applied at the shock wave and £ = 1; condi-

tions there will be designated?by the subscript w. TFor any function f

Bflan] = (csc B) af/dc = (esc B)(ar/ag) K,
£ =1

vhere ¢ is arc length along the shock wave and Kw = dB/dc is the

curvature of the shock. The initial conditions are

- (¢ sc B, V_ = (av/as) K csc B
U, = (au/ag) K, csc 8 w = (e v (3.7)
R, = (d/aB) K, csc 8,

20



where du/dB, dv/dg, and dp/dB are obtained by differentiating the
shock relations; e.g., Equation {(2.1b).

The solution to Equations {3.3) can be written

v

= Kth f U > V= vah + vn, . R = Kth + Rn (3.8) -

where Uh’ Vh’ and Rh are the solutions to the homogeneous equatlons
satlsfylng the 1n1t1al COndlthnS, Equation (3. ?), with K = 1; U R Vn’

and R are particular solutions to the non-homogeneous equatlons satisfy-

ing the :Lnltlal conditions (U ) ) = (R )
n.w n n W
With the solutions Uh"Un’ cres Rn determined it remains to find Kw
for the complete Solwm,ion, Equation (3.8). This ls found by applying the
terminal condition, Equation {2.15) to the gradient functions. From
Equation (2.15) one obtains
< U tan 8+ uw sec?s. (36 /an) (3.9)
Y% b % b % My =0 RN
also
. (98, /3n) ;— =K csc 8 ' - (3.10)
_where Kb z deb/ds denotes the curvature of the body at the-tip, and 5'
the arc length along the body. Combining Equations (3.8), (3.9) and
(3.105 gives the shock curvature in terms of the body curvature
k = |usec 8 csc 8 - U ten &
w o |V, - U, tan 8]y Kb - U tan 6 |, - (3.11)
Finally,'the'gfadieots on the body are giveh by * '
v T . . - . . B v
(dp/ds). = P_ sin 6_, (aE/ds). = . sin 6, (3.12)
1o [] (&) o 8] [#]
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it

(dT/ds)b (pP - pR)b(sin eb)/pb2 ,

(3.12)

(dq/ds), (v + vV), (sin 8.0/,

where P is given by Equation (3.6).

Equation (3.11) shows that the shock wave curvature at the tip of
a pointed body of revolution is the sum of two terms; i) the curvature
for a curved body in frozen flow, and ii)} the curvature for nonequilibrium

flow over a cone.

Previous calculations, Shen and Lin (1951), and Bianco et al. (1960),
have been made of Kb/Kw for ideal gas flows {e = 0 in Equations (3.3}).
These and calculations from the'present work indicate that Kﬁwa becomes
zero for every axisymmetric body at some MO0 which produces a partially
subsonic, partially supersonic conical flow at the tip (n = 0}. This
implies that for each Bb, there is an M for which, according to
Equation (3,11),

(V. ~'U,_ tan 8), = 0.
n n o]

This is the "Crocco point" in axisymmetric flow (see Ferri (1954}). It
is also seen from Equation (3.11), that for these same values of Mw and
Bb the curvature of the shock wave in nonequilibrium flow beccmes

infinite at the tip of the cone (where Kb = 0).

L, SOLUTION IN THE VICINITY OF THE SINGULAR POINT

The equations for the gradient functions (3.2) and (3.3) have a
regular singular point at 7 = 0. Following Ince (1926) the first step
in examining the nature of the solutions in the neighborhood of the
singular point is to set up the indicial equation and find its roots.

When this is done for Equations (3.2) and (3.3) it is found that the

22



roots are: 0, 0, 1/2, 1/2. The presence of the two'double roots indicate
that logariﬁhmic terms must be included. Thus, each variable has the

form

-

1/2 1/2

Py + (log ¢) By + 07" Pov (o7 1og 2) By (4.1)

where the P dencotes power series with unknown coefficients Recurrence
relations obtalned by substltutlng these forms into the deferentlal
equatlons determine the coeff1c1ents of the power serles in terms of the

arbltrary constants.

Sirce a numerical solution to Equations (3.2) and (3.3) is obtained,
a lengthy discussion of the singularity is not needed. Suffice it to

say that the constant terms in the series P, and Py are zero for each

variable. . Thus, each gradient function has the form

,constant;+.(gl/? X constant) = . - .o (b.2)

in the neighborhood of [ = 0.

5. NUMERICAL SOLUTION
Equations (2.12) are first solved separately; then Equations (3.2)

and (3.3) are solved. The Runge-Kutta-Gill method is used to integrate

the equations numerically.

With high speed computers it is‘possible to study the solution
emplrlcally by carrying out a "Getailed approach" to the ‘body; that is,
to systematically decrease the interval size 1n the Runge-Kutta-Glll
procedure as ¢ approaches zero, endlng the calculatlon av an extremelyl

12).

small but f1n1te value of Cﬁth ThlS is the method used 1n the

present work While admlttedly not elegant thls procedure does produce
answers in reasonably short tlmes and a poster@ort tests indicate that

the values obtained are correct. Thus, unique limits for the gradient

23



functions are found as the integration interval and limiting £ approach

/2

zero; also, the calculated gradient functions exhibit the cl variation
near zero, Equation (4.2), which was demonstrated in Section 4, 1In
addition, the calculated solution to Equation (3.2) agrees with the

known value (Q = &/v) obtained from Taylor-Maccoll flow.

6. RESULTS

In the case of cones {where Kb = 0} the shack curvature KW reduces
to the second term of the expression in Equation (3.11). This quantity
was calculated for a wide range |of Mach numbers and cone angles for
nitrogen at 3OOOK. Results are;shown in Figure 3 (solid curves). Each
curve has a vertical asymptote occurring at a cone angle for which the
Taylor-Maccoll flow is superscnic at the shock wave, but subsonic at the
body; KW changes sign here and then decreases in absolute value with
increasing eb. The qualitatiwve behavior of Kw is similar to that of
shock curvature at a wedge tip, shown also in Figure 3. TFigure 4 shows
the variation of the pressure gradient at the tip of a cone; the
"Crocco point" asymptotes appeag here also.

From results of Millikan and White (1963) some representative values
of Tb! qm', the normalizing quahtity‘for distances, are: Ty 'qm "= 5.2,
0.26, and 0.034 cm for 6, = 30°, 40°, and 50°, respectively, at
M_= 10, p_'= 1 atmosphere; for other pm', the given tb' a_'is to be
divided by the number of atmospheres.

In Figure 5 the gradients of pressure, temperature, and density at
the tip of a cone are given as functions of core angle for M_ = 10,
Tm' = BOOOK in nitrogen. The density gradient is unusual in that it is
non-monctonic and changes sign; this change in sign takes place when
the flow on the cone surface is subsonic. A similar type variation is
found for density gradient at the tip of a wedge and is indicated in

this figure; here the change in sign occurs for supersonic flow at the

24
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wedge surface. Similar behavior for the density gradient in plane flow
*
was found for the case of dissceiating air, using the gas model and

gradient formulae of Spurk, et al. (1966).

As mentioned in Section 1, the present work has application in the
caleulation of axisymmetriec nonequilibrium flows. In previous work,
Sedney and Cerber (1963), an initial region of frozen flow was assumed
in order to start a nonegullibrium flovw computation by the method of
characteristies. This lead to fesults illustrated in Figure 6 for
pressure variation on the body in a typical case of flow over a cone.
The results are clearly in erro% near the tip; however, a curve drawn
through the points further downstream can be faired back easily to the

correct pressure at the tip, as 'evidenced by the sclid curve. This

furnishes an indication that the results downstream are correct. The
gradient calculations, indicated by the dashed lines, give further
assurance of the wvalidity of the characteristic computations downstream
by demonstrating that the sclid curves can he extended back to the tip

pressure with the correct slope. Gradient wvalues can also be useful in

initiating nonequilibrium characteristic flow computations,

|
The present results can be compared with those obtained by an

application of Dorodnitsyn's integral method, South and Newman (1965).
This latter procedure is an approximate method which yields algebraic
equations for the curvature and gradients at the tip of a cone. Figure
f shows the comparison for two Mach numbers. The agreement, in general,

is good; it is found to improve as the angle interval £ - eb decreases.

=l
(]
Ch
=i
[9p]
r'l
€3

=
EI

A method is given for determining the shock curvature and flow
variable gradients at the tip of a pointed body of revolution. The use

of wvariables introduced by Chester simplifies setting up the calculations

*
A characteristic calculation of one example with an initially negative
density gradient was performed. The gradient changed sign at a
distance of 3x (initial frozen length) and thereafter was positive.
All other flow variables were momotonic.
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as compai'ed to use of polar coordinates. Although the specific scurce
of departure from equilibrium considered Hé’re is vibrational excitation,
the same’ technique can be .applied to a dissociating gas, with the same
qua.litat'ive fesults expected:. _ ' ' '

It is shown that the shock curvature at the tip of a pointed body
of revolution is the sum of two terms: i) the curvature for a. curved
body in ?frozen flow and ii) the curvature for nonequilibrium flow over
a cone. Also, the Crocco point.for nonequili’brium flow occcurs at the

same Mach number and cone angle combination as for frozen flow.
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